A Selective Inhibitor of Heme Biosynthesis in Endosymbiotic Bacteria Elicits Antifilarial Activity In Vitro

Christian S. Lentz, Victoria Halls, Jeffrey S. Hannam, Björn Niebel, Uta Strübing, Günter Mayer, Achim Hoerauf, Michael Famulok, and Kenneth M. Pfarr

1Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud Strasse 25, 53127 Bonn, Germany
2LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
3These authors contributed equally to this work

*Correspondence: m.famulok@uni-bonn.de (M.F.), pfarr@microbiology-bonn.de (K.M.P.)

http://dx.doi.org/10.1016/j.chembiol.2012.11.009

SUMMARY

Lymphatic filariasis and onchocerciasis are severe diseases caused by filarial worms and affect more than 150 million people worldwide. Endosymbiotic α-proteobacteria Wolbachia are essential for these parasites throughout their life cycle. Using a high-throughput chemical screen, we identified a benzimidazole compound, wALADin1, that selectively targets the δ-aminolevulinic acid dehydratase (ALAD) of Wolbachia (wALAD) and exhibits macrofilaricidal effects on Wolbachia-containing filarial worms in vitro. wALADin1 is a mixed competitive/noncompetitive inhibitor that interferes with the Mg2+-induced activation of wALAD. This mechanism inherently excludes activity against the Zn2+-dependent human ortholog and might be translatable to Mg2+-responsive orthologs of other bacterial or protozoan pathogens. The specificity profile of wALADin1 derivatives reveals chemical features responsible for inhibitory potency and species selectivity. Our findings validate wALADins as a basis for developing potent leads that meet current requirements for antifilarial drugs.

INTRODUCTION

Lymphatic filariasis and onchocerciasis are vector-borne diseases caused by the filarial nematodes Wuchereria bancrofti, Brugia timori, Brugia malayi, and Onchocerca volvulus and are rated as major public health problems by the World Health Organization. More than 1.2 billion inhabitants in endemic countries are at risk of developing the disabling and stigmatizing chronic diseases, i.e., lymphedema and hydrocele in lymphatic filariasis, or severe dermatitis and blindness in onchocerciasis (Hoerauf et al., 2011; Taylor et al., 2010).

Mass drug administration programs (MDA) using annual treatment with a combination therapy of diethylcarbamazine (DEC) or ivermectin (IVM) plus albendazole are used in many endemic countries (Global programme to eliminate lymphatic filariasis, 2009, 2011) to reduce the transmission of filarial disease, mainly by killing offspring microfilariae (MF), and to prevent exacerbation of the disease (Hoerauf et al., 2011; Taylor et al., 2010), while adult worms that persist in the human host for several years are merely paralyzed.

In an environment with increasing reports of suboptimal responses against standard IVM and DEC therapy (Bourguinat et al., 2011; Churche et al., 2009; Esterre et al., 2001; Osei-Atweneboana et al., 2011) and the exclusion of use of either drug in certain geographical regions due to adverse effects of DEC in onchocerciasis and IVM in loiasis (Gardon et al., 1997), the call for novel antifilarial drugs or treatment options has been raised (Bockarie and Deb, 2010).

As a step toward novel antifilarial pharmacotherapy, the spotlight has turned on endosymbiotic α-proteobacteria, known as Wolbachia, that are found in all filarial species causing lymphatic filariasis or onchocerciasis (Taylor et al., 2005). Depletion of prokaryotic Wolbachia from its hosts by tetracycline antibiotics leads to sterility of adult worms followed by their death, showing that Wolbachia are a target for antifilarial drug design (Hoerauf et al., 2000). However, despite the efficacy of doxycycline with regard to the sterilization of worms, alleviation of pathology, and successful clinical use (Hoerauf et al., 2009), the logistically complicated and expensive treatment regimens and contraindications for large groups in the population prevent its use in MDA (Geary and Mackenzie, 2011; Hoerauf et al., 2009).

In the annotated genome from the Wolbachia endosymbiont of B. malayi, several essential biochemical pathways such as purine, riboflavin, and heme biosynthesis were identified that are absent or incomplete in the filarial host (Foster et al., 2005; Ghe din et al., 2007) and are considered promising sources of novel targets in antifilarial drug development (Slatko et al., 2010; Wu et al., 2009). A candidate target in Wolbachia is δ-aminolevulinic acid dehydratase (wALAD; also known as porphobilinogen [PBG] synthase, E.C. 4.2.1.24, encoded by the hemB gene), an enzyme that catalyzes the first common step of tetrapyrole synthesis—namely, the condensation of two molecules of 5-aminolevulinic acid (5-ALA) to PBG, a function conserved in all organisms that endogenously synthesize heme, chlorophyll, or corins (Jaffe, 2004).

To explore wALAD as a target for antifilarial therapy, we designed a wALAD activity-based chemical screening assay to...
identify wALAD inhibitors from a library of ~18,000 drug-like compounds. Here, we report the discovery of a class of substituted benzimidazole-5-carboxylic acid structures, called wALADins, as species-selective inhibitors of wALAD that show only negligible inhibition of the human ortholog. We demonstrate macrofilaricidal effects of wALADin1 in Wolbachia-containing filarial worms in an ex vivo culture system, a finding that will allow the exploitation of this exciting class of wALAD inhibitors for the future development of potent antifilarial leads for drugs that might eradicate lymphatic filariasis and onchocerciasis.

RESULTS

Identification of a Specific wALAD Inhibitor

We established a high-throughput screening (HTS)-compatible assay by monitoring the wALAD-catalyzed conversion of 5-ALA to PBG, the formation of which was detected by a colored condensation product with p-dimethylamino-benzaldehyde (Ehrlich’s Reagent) at 555 nm (see a detailed overview of the HTS assay in Table S1 available online). A chemical library containing ~18,000 diversity-based drug-like small molecules (Hafner et al., 2006, 2008; Niebel et al., 2010; Yamazaki et al., 2007) was screened to identify inhibitors of wALAD. The average assay quality parameter Z’ was 0.65 ± 0.20 throughout the screening, indicating robust assay performance (Figure 1A).

The screening revealed a cluster of substituted benzimidazole derivatives that inhibited wALAD activity in a dose-dependent manner, while activity of the human ortholog hALAD was only marginally affected. The most potent of these compounds was termed wALADin1 (wolbachia ALAD inhibitor 1) (Figure 1B). It inhibited wALAD with a half maximal inhibitory concentration (IC50) of ~11 µM at pH 8.0. hALAD is only marginally affected (IC50 > 500 µM for pH 7.5; IC50 > 1 mM for pH 8.0). The >60-fold discrimination in inhibitory potency of the endobacterial over the human ALAD ortholog indicates that wALADin1 is a species-selective inhibitor.

We next performed thermal shift assays to demonstrate that wALADin1 binds to wALAD. As hydrophobic side chains become exposed upon thermal denaturation, the melting curve of a protein can be measured as an increase in fluorescence intensity of the environmentally sensitive dye SYPRO Orange (Zhang and Monsma, 2010). Increasing concentrations of wALADin1 stabilized wALAD tertiary structure (rightward shift of the melting curves).

Figure 1. HTS Identifies the Substituted Benzimidazole wALADin1 as a Species-Specific Inhibitor of wALAD

Recombinant wALAD was subjected to HTS (Z’ = 0.65 ± 0.20) against a library of ~18,000 small molecules. (A) One primary screening plate on which the most potent species-selective inhibitor, called wALADin1 (arrow), was detected. Positive control (Pos. Ctrl.) of the enzymatic assay contained protein, substrate, and 6.7% DMSO; for negative control (Neg. Ctrl.), substrate was omitted. (B) Chemical structure of wALADin1. (C) Dose-response curve for wALADin1 incubated with wALAD and hALAD revealing species-selective inhibition wALAD (IC50, ~11 µM at pH 8.0). hALAD is only marginally affected (IC50 > 500 µM for pH 7.5; IC50 > 1 mM for pH 8.0). The graph is representative of three experiments showing mean ± SD. (D) Melting curve of 5 mM wALAD measured as an increase in fluorescence intensity of the environmentally sensitive dye SYPRO Orange; increasing concentrations of wALADin1 stabilized wALAD tertiary structure (rightward shift of the melting curves).

See also Figure S1 and Table S1.

Chemistry & Biology

wALADin1, a Filaricidal Wolbachia ALAD Antagonist

178 Chemistry & Biology 20, 177–187, February 21, 2013 ©2013 Elsevier Ltd All rights reserved
control proteins (bovine serum albumin [BSA], lysozyme). (Figures S1B and S1C). These experiments demonstrate that wALADin1 specifically binds to wALAD.

wALADin1 Interferes with wALAD Activation by Mg2+

Having qualitatively described the binding between wALADin1 and its enzymatic target, we characterized this inhibitor in terms of its molecular mode of action. As wALAD is a Mg2+-responsive enzyme (EC50 ~11 μM, Figure 2A), we studied the influence of Mg2+ concentration on the inhibitory properties of wALADin1. The observed rightward shift of the Mg2+ response curve in the presence of increasing concentrations of wALADin1 indicates a functional competition between inhibition by wALADin1 and the activation induced by Mg2+ (Figure 2B).

We then determined the underlying type of inhibition by measuring enzymatic activity at different wALADin1 concentrations with varying concentrations of the 5-ALA substrate. 5-aminolevulinic acid dehydratase (ALAD) proteins are morpheins that can form multiple homomeric assemblies that show dramatic differences in their catalytic activities (Jaffe, 2005; Lawrence et al., 2008). Nonlinear regression analysis (NLR) assuming a double hyperbolic progression representing different V max and KM values of different oligomeric assemblies of the morphein (with high affinity and activity for an octameric and reduced affinity for lower molecular weight assemblies) gave the best fits (R2 values, 0.9902–0.9961). An increase in both apparent KM values and a reduction in the overall Vmax in the presence of increasing 5-ALA concentrations was observed (at 6.7% dimethyl sulfoxide [DMSO]: Vmax1 = 0.071, KM1 = 163 μM, Vmax2 = 0.014, and KM2 = 3.4 mM; at 25 μM wALADin1: Vmax1 = 0.046, KM1 = 456 μM, Vmax2 = 0.023, and KM2 = 6.4 mM). For 100 μM wALADin1, a double hyperbolic fit was not superior to a simple hyperbole (Vmax = 0.049, KM = 1.6 mM). The inhibitory mechanism predicted by NLR data is consistent with the linearized Eadie-Hofstee representation suggesting a mixed competitive/noncompetitive mode of inhibition (Figures 2C and 2D). NLR assuming classic mixed model inhibition had a slightly poorer fit but was useful for approximation of the inhibition constant Ki = 5.95 ± 0.95 μM (α = 31.44 ± 9.59; R2 = 0.9794) at 1.0 mM MgCl2.

For pea and human ALAD compounds that stabilize the inactive hexameric over the active octameric, conformation elicited ortholog-specific inhibition. Native PAGE analysis of wALAD, with hALAD used as controls for the localization of hexameric
and octameric bands (Figure S2A), revealed that preincubation with wALADin1 did not alter the oligomeric equilibrium but it bound to and reduced activity of wALAD octamers in an in-gel activity assay (Figure S2B).

wALADin1 Elicits Filaricidal Activity in Worms Containing Wolbachia

Having characterized the inhibitory effects of wALADin1 on wALAD at the molecular level, we proceeded to demonstrate its antifilarial activity. We therefore tested wALADin1 against the rodent filarial nematode Litomosoides sigmodontis (Ls), a model for human filarial nematodes causing lymphatic filariasis and onchocerciasis that also harbors Wolbachia endobacteria (Hoerauf et al., 1999). wALADin1 was tested against Ls in a coculture assay with monkey kidney LLC-MK2 feeder cells within a concentration range between 125 and 500 μM. These levels exceeded the IC50 concentration of the enzymatic assay by ~10-fold to ~50-fold—an excess we expected to be required to achieve near-complete inhibition in the living worm. Indeed, we observed a concentration- and time-dependent decrease in motility of adult Ls females for all concentrations tested in the course of the 17-day culture period (Figure 3B).

Healthy worms make very quick, fidgeting continuous movements over their entire body length. The phenotype of wALADin1-treated worms had a specific and characteristic appearance: the worms first formed slowly moving ball- or knot-like shapes (rated with a motility score of 4) that later became largely immotile (score of 3). This phenotype preceded the stretched low-motility forms that characterized the phenotype of dying worms (Figure 3A; Movies S1, S2, S3, S4, and S5). The pronounced filamentar effect of wALADin1 was consistent for all concentrations tested as quantified in a viability measurement (MTT assay; Mann-Whitney U test, p < 0.05) (Figure 3C). Median viability was reduced to 44%, 27%, or 7.5% (normalized to 1% DMSO groups as 100% viability and dead cell control group set to 0%) by 125 μM, 250 μM, or 500 μM, respectively, suggesting an IC50 concentration of ~100 μM in this assay.

We complemented these studies with cytotoxicity experiments using wALADin1 on both LLC-MK2 (monkey kidney) cells and human embryonic kidney (HEK) cells. Viability of the cells was measured by MTT assay after 48 hr incubation at different concentrations of wALADin1. Viability was reduced for both cell lines at 500 μM and 1 mM wALADin1 (Figure S3A). However, at 500 μM, the LLC-MK2 cell line in the worm coculture was always intact, and cells showed no sign of apoptosis. Thus, the observed effect on viability at that concentration may be attributed to an antiproliferative activity of wALADin1 rather than cytotoxicity.

To dissect the contributions of nonspecific cytotoxic and specific antifilarial effects resulting from ALAD inhibition in the Wolbachia endosymbionts of Ls worms, we tested wALADin1 against A. viteae (Av), another model rodent filarial nematode that does not have Wolbachia (Hoerauf et al., 1999). We performed a nucleotide query of the recently completed Av genome database (Blaxter, 2012) using the hemB genes (that code for ALAD) of Wolbachia of B. malayi, human, and yeast as input sequences (accession number AE017321.1, gene locus Wbm0373; X64467; J03493) that showed that there are no orthologous genes in this worm. Therefore Av should only be sensitive to nonspecific cytotoxic effects of the compounds. Exposure to 500 μM wALADin1 had an effect, reducing Av motility to a score of 4 within 2 hr, and motility remained at this level for ~10 days (Figure 3D). However, there was no significant influence on the viability of Av worms in the more accurate MTT assay (Figure 3E). Note that direct comparison of motility scores between Ls and Av is restricted by their different motility phenotypes (Av worms move more slowly) (Supplemental Experimental Procedures; Movies S1, S2, S3, S4, and S5). The characteristic balled phenotype observed in wALADin1-treated Ls was absent in Av. At wALADin1-concentrations lower than 500 μM, neither an effect on viability nor one on motility of Av was detectable, whereas a >50% impairment of viability on Ls was seen already at 125 μM. Taken together, the antifilarial effect of wALADin1 on Ls is thus due to the dependence of this species on Wolbachia.

The antifilarial effect of wALADin1 might be enhanced by a combination of reduced heme levels and excess 5-ALA-induced toxicity, as 5-ALA levels are expected to build up as a consequence of ALAD inhibition. In order to verify this hypothesis, motility and viability of Ls as a function of 5-ALA concentration were assessed. Both parameters were reduced upon treatment with 1 or 5 mM 5-ALA (Figures S4A and S4B). Thus, exposure to increased 5-ALA levels indeed has a filaricidal effect.

Specificity of wALAD Inhibitors

The antifilarial activity and the species selectivity of wALAD inhibition encouraged us to characterize in greater depth the activity and specificity of wALADin1 1 (all compounds are continuously numbered and are referred to as bold numbers 1–16). We first assessed the general influence of single substituent groups R1, R2, and R3 present in the benzimidazole scaffold of 1 on the overall inhibitory activity by successively replacing each group with a hydrogen atom (Compounds 2, 3, and 4) (Table 1). Compound 3 retained the inhibitory potency of wALADin1 indicating that the 2-[[2-thienylcarbonyl]amino]ethyl residue of 1 is dispensable for inhibitory activity. In contrast, the absence of the R1 3-CF3 benzyl group (2) or the R3-COOH function (4) led to an abrogation of inhibitory activity. A methyl ester variant of 1, compound 5, was equally inactive as 4, revealing the importance of the carboxyl group for wALAD inhibition: either the solubility of the compounds is affected in a way that prevents inhibitory potency, or the carboxylic acid moiety is functionally required. To test this, we performed a carboxylate scan by attaching the COOH group at benzimidazole atoms C6, C8, and C9 (6, 7, and 8, respectively). While 7 was inactive, 6 and 8 showed a 29-fold and 15-fold loss of inhibitory potency, respectively, indicating that activity is affected by the positioning of the carboxy group rather than solubility.

Isomers 6–8 were also tested in the thermal shift assay for wALAD binding. The noninhibitory compound 7 does not stabilize wALAD at all, whereas 6 and 8 stabilize the protein with discernible but smaller melting shifts (ΔTm) than wALADin1 (Figure S1), which is commonly interpreted as reduced binding affinities (Zhang and Monsma, 2010). These results concur with the IC50 values determined in the enzymatic inhibition data. Different entropic and enthalpic contributions to the free energy of binding between 6 and 8 may explain the considerably larger ΔTm of 6,
being the slightly less potent inhibitor. Overall, these results demonstrate that the position of the carboxylic acid at the benzimidazole ring is crucial for the inhibitory potency and indicate an involvement of this group in binding, e.g., by salt bridge formation.

Alterations of the R 1-substituent generally led to a decrease in inhibitory activity. For example, moving the CF\textsubscript{3} group in the R 1-isomer of wALADin1 from position 3 (1) to position 4 (9) resulted in a 4-fold reduced activity. As R2 is apparently dispensable for inhibition, we synthesized a series of R1-variants with an R2-H substituent. Interestingly, compound 10, the R2-H derivative of compound 9 was ~2-fold less active (IC\textsubscript{50} ~88 \mu M) than 9, indicating R2-substituents may confer additional potency. Compared to 3, the re-positioning of the CF\textsubscript{3} residue in R1 (10) or
its change to CH₃ (13) led to 8- and 10- fold reduced potency. As further R¹ substitutions also led to a significant reduction (11–14) or abrogation of inhibitory activity (15, 16) we conclude that R¹ in general and its CF₃ group in particular are important for inhibitory potential so that the 3-CF₃ benzyl residue is optimal among the series of compounds tested.

It is intriguing that all compounds featuring the 2-[[2-thienylcarbonyl]amino]ethyl at R² (1, 4–9) are, at best, only very weak inhibitors of hALAD (≥618 µM). In contrast, smaller R²-H compounds (3, 10–14) have IC₅₀ values between 145 and 222 µM for hALAD with compounds 11 and 14 being even more potent inhibitors of the human than of the Wolbachia protein. These data are summarized in Figure 4 and suggest that, although the R²-substituent of wALADin1 is not required for inhibiting wALAD, it is important for species selectivity, e.g., by imposing a steric hindrance for the hALAD binding site. Despite the reduction in species selectivity, removal of the R²-2-[[2-thienylcarbonyl]amino]ethyl group of the 473.5 Da molecule wALADin1 resulting in 3 showed no loss of inhibitory activity and presents the smaller 320 Da compound 3 as an improved lead candidate.

In order to determine the antifilarial profile of wALADin1 derivatives, selected compounds 3 (despite its reduced species selectivity) and 6, neither of which was cytotoxic at 500 µM (Figure S3B), were tested for antifilarial activity against Ls (Figure 5) in the ex vivo culture. Generally, the potent wALAD inhibitor 3 shows similar but slightly less potent antifilarial activity on Ls compared to wALADin1, and it also induced the balled phenotype described earlier (Movies S1, S2, S3, S4, and S5). Motility levels only became comparable to those induced by wALADin1 during the last days (scores 3 and 4 for 125 and 250 µM, respectively). Viability was significantly reduced at 500 µM for 3 (38% median residual viability), but the trend continued for the lower doses.

The 500 µM compound 6, a less potent inhibitor that was still able to bind to wALAD, showed less antifilarial potency than wALADin1 but was stronger than 3, with Ls viability reduced to 24%. The decrease may be related to the rapid, non-Wolbachia-dependent activity seen in A.v treated with 500 µM wALADin1 (Figure 3D). Taken together, the structural information of the tested benzimidazole compounds and the pronounced antifilarial activity in vitro observed for the two most potent wALAD inhibitors (wALADin1 and 3) provides an excellent starting point for the development of a more potent lead structure that targets Wolbachia by the specific Mg²⁺-dependent mode of action we have described herein.

DISCUSSION

Current antifilarial drug discovery strategies follow different approaches: the worms may be targeted directly at nematode proteins, e.g., involved in specific processes such as molting (Gloeckner et al., 2010), or indirectly by killing their Wolbachia endosymbionts. Whole-organism-screening approaches are being carried out for both organisms to identify novel antifilarial and anti-Wolbachia compounds and drug targets (Serbus et al., 2012). Wolbachia-targeting drugs acting like classic antibiotics usually deplete the endobacteria from their hosts (Hoerauf et al., 1999). In this study, we targeted a single biochemical pathway considered essential for symbiosis and maintaining worm homeostasis and that may therefore affect the worm directly and more rapidly than Wolbachia-depleting drugs do. The pathway we address is heme biosynthesis, and the target enzyme is wALAD. As B. malayi worms only possess the gene
Wolbachia, a Filaricidal Wolbachia ALAD Antagonist

Figure 4. Summary of Activity Data for wALAD Inhibition by wALADin Inhibitors

The R²-COOH residue is an explicit requirement for inhibitory function and may be involved in salt-bridge formation in the binding site. R¹ is important for inhibitory activity, as all substitutions of the 3-CF₃-methyl benzyl provoked, reduced, or annihilated inhibitory potency with a benzyl group as a minimum requirement. The R³-2-[(2-thienylcarbonyl)amino]ethyl group of wALADin1 appears to be a major mediator of species selectivity.

for ferrochelatase, the last enzyme of heme biosynthesis, and as they are apparently unable to salvage heme from their environment in vitro, they are expected to depend on their endosymbionts that possess the genes required for de novo heme biosynthesis (Foster et al., 2005; Ghedin et al., 2007; Wu et al., 2009).

In contrast, the free-living nematode Caenorhabditis elegans is unable to synthesize heme de novo but relies on exogenous heme sources it may exploit via a system of heme transporters (Chen et al., 2012). It is interesting that non-Wolbachia carrying filarial nematodes such as Av and L. loa, the genomes of which have recently been sequenced (Broad Institute, 2012; Blaxter, 2012), are also heme auxotrophic and must acquire heme from their environment, i.e., the mammalian host. However, it is not known how these filariae actually cover their demand for heme. It is assumed that Wolbachia once infected an ancestor common to many filarial nematodes (McNulty et al., 2010) and that Wolbachia-free filariae have lost the endosymbiont during evolution. It is conceivable, albeit without experimental verification, that these nematodes became independent of their endosymbionts by developing heme transport machineries that allowed them to exploit exogenous heme sources.

Although it may not be completely ruled out that Wolbachia-harboring filarial nematodes may be able to salvage heme from their hosts at least during certain life stages (Attout et al., 2005), the conservation of the heme biosynthetic pathway within the extremely reduced Wolbachia genome (Foster et al., 2005) highlights an evolutionary pressure for sustaining this pathway (either for their own supply or for also provisioning to their hosts).

We have previously shown that, upon depletion of >99.8% of Wolbachia from the rodent filarial nematode Ls by doxycycline, the worms upregulated several mitochondrial encoded heme-dependent subunits of the respiratory chain complexes hypothesized to be a means to overcome the lack of heme supplied by the endosymbiont (Strübing et al., 2010). Treatment of B. malayi adult worms with N-methyl mesoporphyrin, a specific ferrochelatase inhibitor, or succinyl acetone (4,6-dioxoheptanoic acid, SA), a non-species-selective inhibitor of ALAD enzymes, led to the death of the worms (Wu et al., 2009). Specificity of the effects of SA is questionable since the high concentration used (3 mM) also affected growth of heme-auxotrophic C. elegans. Furthermore, the substrate analog SA undergoes Schiff base formation with a catalytic lysine residue (Erskine et al., 2001) also conserved in the active center of the human ortholog (nALAD) excluding its therapeutic use.

In a high-throughput chemical screen, we have identified a class of specific, small molecule inhibitors, called wALADins, that selectively target the Wolbachia ALAD ortholog and exhibit antifilarial activity in vitro. Low μM inhibitory potency in the enzymatic assay and the corresponding high concentrations required to achieve an antifilarial effect against worms in culture make a successful use of these compounds in vivo a challenging but worthy task. The present study paves the way for the development of similar, but more potent, inhibitors (ideally with nanomolar potency) as better drug candidates. These specific inhibitors may further be applied as chemical biology tools to unravel the role of Wolbachia-dependent heme biosynthesis in symbiosis and to understand effects caused by depletion with antibiotics (Strübing et al., 2010).

In contrast to previously described ALAD inhibitors, wALADin1 neither acts as a competitive substrate analog nor stabilizes inactive oligomeric assemblies like morphlock inhibitors (Lawrence et al., 2008). wALADin benzimidazoles act by a mixed competitive/noncompetitive mechanism that involves a functional competition with Mg²⁺. The key to species selectivity lies in the different metal cofactor usage of ALAD families and the corresponding active site architecture and allosteric activation mechanisms. wALAD lacks the cysteine-rich consensus sequence required for Zn²⁺ binding in the catalytic center that is required for catalytic activity by all Zn²⁺-dependent orthologs (Jaffe, 2003), including the human enzyme. Instead, wALAD is...
more closely related to the plant (i.e., chloroplast) and several other bacterial orthologs that use Mg$^{2+}$ at the active and/or an allosteric site (Frankenberg et al., 1999; Kervinen et al., 2000; Wu et al., 2009). Despite sporadic evidence for a catalytic active site Mg$^{2+}$ ion substituting the function of the catalytic Zn$^{2+}$ in Zn-dependent orthologs (Kervinen et al., 2000; Petrovich et al., 1996), no crystal structure includes such a Mg$^{2+}$ ion. In contrast, binding of the allosteric Mg$^{2+}$ at a subunit-subunit interface outside the active site is well documented by crystal structures, and the ligand required for binding allosteric Mg$^{2+}$ (Glu245 of P. aeruginosa) is also conserved in the wALAD protein. Given the monophasic nature of the Mg$^{2+}$ activation profile, we hypothesize that the Mg$^{2+}$ is associated with the well-described allosteric effect, although involvement of active site Mg$^{2+}$ may not be ruled out, given the high affinity binding of Mg$^{2+}$ to the Wolbachia ortholog (Kervinen et al., 2000; Shammugam et al., 2010). wALADin1 may act by competing with Mg$^{2+}$ binding (at either site), or it may bind to a different site and interfere with the allosteric activation process, i.e., allowing closure of the active site lid upon binding of the second 5-ALA substrate to the active site (Frankenberg et al., 1999; Jaffe, 2004). Determination of the binding site of wALADin1 by X-ray crystallography will be required to unravel the molecular mechanism of inhibition. However, efforts to crystallize wALAD have not been successful.

Specific inhibition of wALAD by wALADin1 elicits a macrofilaricidal effect in the living worm in vitro with an IC$_{50}$ of \sim100 μM on the Wolbachia-harbouring Ls. In contrast, wALADin1 had little effect on the Wolbachia-free Av. Thus, the antifilarial activity of wALADin1 is Wolbachia dependent. Presumably, this effect results from inhibiting endobacterial heme biosynthesis, although additional targets in Wolbachia are possible. The consistent, albeit weaker, antifilarial activity of 3, a similarly potent wALAD inhibitor according to enzymatic inhibition experiments, supports this conclusion. However, some findings indicate an involvement of a secondary target of wALADins that might act additively or in synergy to inhibit wALAD at high concentrations: (1) the effect of wALADin1 on Av motility, (2) cytotoxicity/growth suppression in cell culture above 500 μM, and (3) loss of Ls motility and viability by 500 μM 6.

A potential secondary target may be filarial orthologs of the human Kinesin-spindle protein (hKSP), a potential anticancer drug target required for mitotic spindle assembly. Benzimidazole chemotypes with a substitution pattern similar to that of the wALADins but different in their substituent classes and activity profiles target hKSP and inhibit cancer cell growth (Lahue et al., 2009). The benzimidazole chemotype is also found in antimalinthic compounds like albendazole that target worm β-tubulin (van den Enden, 2009). It has been shown recently that the albendazole metabolite albendazole sulfone targets Wolbachia and induces binary fission defects (Serbus et al., 2012). An effect via this still unidentified benzimidazole target is also possible for wALADins, and a detailed elucidation of the Wolbachia and filarial phenotypes induced by these compounds is required to unequivocally define the biological effector pathways. However, in light of an ongoing paradigm shift in drug discovery away from single- to multitarget drugs (Hopkins, 2008; Schrattenholz and Soski, 2008), we are now aiming at the elucidation and exploitation of potential secondary targets of wALADin1 in the development of more potent antifilarial agents.

We have shown that the unique mechanism of ALAD inhibition may already involve a second effector pathway: filarial worms are susceptible to high concentrations of the wALAD substrate 5-ALA; these high concentrations are expected to accumulate when ALAD is inhibited and may mediate pro-oxidative effects and GABA agonism (Brennan and Cantrill, 1979; Warren et al., 1998). GABA agonism itself can lead to a block of neuromuscular conditions in humans and based on our results, it is possible that, as a consequence to inhibition of wALAD, both 5-ALA toxicity and heme deprivation may contribute in concert to the observed macrofilaricidal effects. The 5-ALA-driven toxicity may even result in an antifilarial effect, in case filarial worms are shown to take up heme from its host under certain conditions. However, the resulting concentrations and the distribution of 5-ALA in Wolbachia and in the living worm remain to be determined.

ALAD has been explicitly proposed as a potential drug target in the context of various infectious agents like Plasmodium
falciparum (Dhanasekaran et al., 2004), Toxoplasma gondii (Shanmugam et al., 2010), and Pseudomonas aeruginosa (Frankenberg et al., 1993). The discovery of the ALAD-targeting antibiotic Alaremycin produced by Streptomyces (Awa et al., 2005) shows that inhibiting ALAD is a method for antimicrobial killing in nature. Lack of discriminatory power between microbial and mammalian orthologs has been a major drawback for known ALAD inhibitors that may now be overcome with species-selective wALADin benzimidazoles. These Mg²⁺-competitive inhibitors may be effective against a variety of microbes and plants depending on Mg²⁺-responsive ALAD function and may be used as antibiotics, herbicides, or antiprotozoal agents.

SIGNIFICANCE

The filarial diseases lymphatic filariasis (lymphedema, hydrocele, and elephantiasis) and onchocerciasis (severe dermatitis and blindness) infect more than 150 million people in developing countries, with 1.2 billion at risk of contracting these diseases. While the distribution of antilarial drugs such as ivermectin or diethylcarbamazine has been used with success in many areas, mathematical modeling has raised questions about the ability of these programs to be efficacious in larger endemic regions. These programs would require 5–20 years of biannual treatment to interrupt transmission, with high costs and uncertain outcome. There are increasing reports on the suboptimal response to ivermectin, the only drug available for onchocerciasis. Therefore, a suitable replacement drug that is effective with a shorter drug regime and that targets the adult worms rather than larval stages is in urgent need. Here, we report a significant step toward such a drug. We have subjected the target δ-aminolevulinic acid dehydratase (ALAD) of Wolbachia, essential endobacteria of most filarial parasites of humans, to HTS. We identified a Wolbachia-specific inhibitor of ALAD called wALADin1. wALADin1 inhibits via a mixed competitive and noncompetitive mechanism that alters the induction of enzyme activity by Mg²⁺ and has biological activity against the rodent filarial nematode Litomosoides sigmodontis in vitro. By synthesizing derivatives of wALADin1, we have identified key chemical motifs required for this inhibitory activity and species selectivity. These compounds are an excellent starting point for the development of antifilarial leads that are urgently needed to achieve final success of lymphatic filariasis and onchocerciasis elimination programs.

EXPERIMENTAL PROCEDURES

Reagents, Proteins, and Enzymatic Assay

The hemB gene (ALAD) sequence from wALAD and a cDNA-derived human sequence had been previously cloned into the pET-21a vector (Wu et al., 2009). His6-tagged proteins were expressed with minor changes to the original protocol as described in the Supplemental Experimental Procedures. Metal ion dependencies of the proteins used in this study had been determined in a previous study (Wu et al., 2009), in which specific protein activities had been reported as 57.8 μmol PBG/mg of protein per hour for hALAD and 22.5 μmol PBG/mg of protein per hour for wALAD under optimal buffer conditions. The high-throughput enzymatic screening assay is a simplified standard assay for the detection of PBG with modified Ehrlich’s Reagent and is described in detail in Table S1. IC₅₀ determinations of inhibitors were performed manually using 500 nM wALAD in 100 mM Tris (pH 8.0) with 5 mM di-thiothreitol (DTT), 1 mM MgCl₂ or using 250 nM hALAD in 100 mM Tris (pH 7.5) with 5 mM DTT, 10 μM ZnCl₂. Ten micromolar of ZnCl₂ is a standard concentration used to assay Zn-dependent proteins at optimal activity (Lawrence et al., 2008). Higher levels of Mg²⁺ are required to achieve optimal stimulation. Physiological Mg²⁺ concentrations inside Wolbachia are unknown, but free intracellular Mg²⁺ concentrations have been described in the range of 1–10 mM for prokaryotic (Aliotta et al., 1985) and eukaryotic cells (Ebel and Günther, 1985). Protein concentrations were adjusted so that substrate turnover (at 200 μM 5-ALA) after 20 min of reaction at 36 °C was 7%–14%. All reagents were purchased from Sigma, Carl Roth, PAA Laboratories, or Life Technologies.

Thermal Shift Assay

Thermal melting curves of ALAD proteins were recorded on a Rotor-Gene RG-3000 (Corbett Life Sciences) in the presence the fluorescent dye SYPRO Orange, which elicits increased fluorescence intensities when bound to hydrophobic amino acids exposed during protein unfolding. Triplicate samples were prepared of 5 μM (0.2 mg/ml) wALAD in 1 M Tris (pH 8.0), 5 mM DTT, 1 mM MgCl₂, different concentrations of wALADin1/derivatives or 1% DMSO as control, and 16× SYPRO Orange in a final volume of 10 μl. Control proteins were assayed under identical conditions at 8–16× SYPRO Orange, with chicken egg white lysozyme measured at 3 mg/ml, BSA at 0.5 mg/ml, and hALAD at 0.2 mg/ml in the presence of 10 μM ZnCl₂ instead of MgCl₂. Samples were denatured with a heating rate of 0.5 °C/30 s from 27°C to 95°C. Fluorescence was measured on the FAM (6-carboxyfluorescein) channel (excitation at 470 nm; detection at 510 nm), and first derivative analysis for the measurement analysis was conducted using Rotor-Gene 6 software.

Chemical Compounds and Syntheses

See full methods in Supplemental Experimental Procedures for the detailed synthesis.

Animals, Infections, Cells, and Coculture Assays

Protocol approval and ethical clearance for animal handling was obtained from the Landesamt für Natur Umwelt und Verbraucherschutz Nordrhein Westfalen in Recklinghausen, Germany (AZ 8.87-50.10.35.08.024). German and European Union guidelines to minimize animal suffering were followed. Av-infected Mongolian gerbils were kindly provided by Dr. R. Lucius (Humboldt-Universität zu Berlin, Berlin, Germany).

The Ls cycle was maintained at the University Hospital of Bonn (Bonn, Germany) as previously described (Ali-Qaoud et al., 1997). For natural infection with Ls, anesthetized gerbils were exposed to tropical dust mites (Ornithonyssus bacoti) infected with Ls. Patently infected animals were euthanized after 3–9 months postinfection, and adult Ls worms were isolated from the pleural cavity. Av were isolated from the subcutaneous tissue of gerbils 6–12 months after infection. Isolated adult female worms of Ls or Av were washed and placed on a confluent layer of LLC-MK2 cells (a kind gift of S. Townsend, London School of Hygiene and Tropical Medicine) in six-well plates (six worms per group) and kept at 37°C, 5% CO₂. After 24 hr, worms were exposed to the drugs or 1% DMSO control in 3 ml medium for 14–17 days. Medium was exchanged every 2 days. Please refer to Supplemental Experimental Procedures for a description of the motility scores and worm viability measurements by MTT assay adapted from a study initially describing the coculture system for male adults of another filarial species (Townson et al., 2006).

Statistics and Data Analyses

All data and statistics were analyzed using Prism 5.0 (GraphPad Software). Results of enzymatic assays are given as the mean ± SEM. Curves were fitted using the “loess” versus normalized response – variable slope” nonlinear regression model. Hill-slope values were allowed to adopt values different from −1 due to the possibility of different cooperative effects on ALAD oligomers. Predicted Hill-slope values ranged from −0.45 to −0.81. For type-of-inhibition experiments, primary data were fitted using the mixed model inhibition algorithm and linear Endie-Hofstee representations were generated. Statistical analyses were conducted using the nonparametric two-tailed Mann-Whitney U test for significance testing with a significance level of α = 0.05.
SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, five movies, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.chembiol.2012.11.009.

ACKNOWLEDGMENTS

We thank B. Slatko and B. Wu of New England Biolabs for the wALAD and hALAD expression plasmids and for help with enzyme expression, purification, and activity measurement; S. Townsend for LLC-MK2 cells; R. Lucius for Avf-infected Mongolian gerbils; K. Rotscheidt and K. Gorskii-Rzepeński for excellent technical assistance; and the members of the Famulok and Hoerauf laboratories. We also thank M. Blaxter and G. Koutsouvolou, University of Edinburgh, who sequenced and assembled the Av genome with funding from the European Commission as part of the Enhanced Protective Immunity against Filarialisiosis Consortium (Contract No. 242131), and E.K. Jaffe for helpful discussions. This work was supported through a grant from the Liverpool School of Tropical Medicine to A.H. and K.M.P. as part of the A-WOL (Anti-Wolbachia) Consortium funded by the Bill and Melinda Gates Foundation; the BONFOR intramural funding program to A.H.; and the Deutsche Forschungsgemeinschaft (SFB 704) and the North Rhine Westfalia research school Life and Medical Sciences Institute (LIMES)—Chemical Biology to M.F.

Received: September 27, 2012
Revised: November 19, 2012
Accepted: November 21, 2012
Published: February 21, 2013

REFERENCES
