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TABLE 13-9 Some Enzymes (Flavoproteins)
That Employ Flavin Nucleotide Coenzymes

Flavin Text
Enzyme nucleotide  page(s)
Acyl-CoA dehydrogenase -AD 0638
Dihydrolipoyl dehydrogenase -AD 005
Succinate dehydrogenase -AD 612
Glycerol 3-phosphate dehydrogenase -AD 714-715
Thioredoxin reductase AD 869
NADH dehydrogenase (Complex |) FMN 0696-697

Glycolate oxidase FMN 767

Lehninger Principles of Biochemistry. 51" Ed.
Nelson & Cox
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Non-enzymatic glucosylation of proteins
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Glycolysis - overview —_— Glcoss
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Energetics of glycolysis

)

TABLE 16.3 Reactions of glycolysis

AG® in AGin
kcal mol~1 kecal mol—1
Step Reaction Enzyme Reaction type (kJ mol~1) (kJ mol~1)
1 Glucose + ATP — glucose 6-phosphate + ADP + H* Hexokinase Phosphoryl transfer -4.0(-16.7) -8.0(-33.5)
2 Glucose 6-phosphate == fructose 6-phosphate Phosphoglucose isomerase Isomerization +0.4 (+1.7) -0.6(-2.5)
3 Fructose 6-phosphate + ATP —» Phosphofructokinase Phosphoryl transfer -3.4(-14.2) -5.3(-22.2)
fructose 1,6-bisphosphate + ADP + H*
4 Fructose 1,6-bisphosphate Kldolage Aldol cleavage +5.7 (+23.8) -0.3(-1.3)
dihydroxyacetonephosphate + glyceraldehyde 3-phosphate
5 Dihydroxyacetone phosphate glyceraldehyde 3-phosphate Triose phosphate isomerase Isomerization +1.8(+7.5) +0.6 (+2.5)
6 Glyceraldehyde 3-phosphate +P; + NAD" == Glyceraldehyde 3-phosphate Phosphorylation coupled ~ +1.5 (+6.3) +0.6 (+2.5)
1,3-bisphosphoglycerate + NADH + H* dehydrogenase to oxidation
7 1,3-Bisphosphoglycerate + ADP 3-phosphoglycerate + ATP  Phosphoglycerate kinase Phosphoryl transfer —4.5(-18.8) +0.3 (+1.3)
8 3-Phosphoglycerate == 2-phosphoglycerate Phosphoglycerate mutase Phosphoryl shift +1.1 (+4.6) +0.2(+0.8)
9 2-Phosphoglycerate phosphoenolpyruvate +H,O Enolase Dehydration +O"j' (+1.7) -0.8 (*3-3)_
10 Phosphoenolpyruvate + ADP + HT —s pyruvate + ATP Pyruvate kinase Phosphoryl transfer -7.5(-31.4) -4.0 (-16.7)

Note: AG, the actual free-energy change, has been calculated from AG®" and known concentrations of reactants under typical physiologic conditions. Glycolysis can proceed only
if the AG values of all reactions are negative. The small positive AG values of three of the above reactions indicate that the concentrations of metabolites in vivo in cells undergoing
glycolysis are not precisely known.

Berg, Tymoczko, Stryer: Biochemistry



Glycolytic steps: Phosphorylation catalysed by hexokinase
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* Kyigie < 100 uM 11
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Induced fit Berg, Tymoczko, Stryer: Biochemistry



Glycolytic steps: Isomerisation catalysed by glucose phosphate isomerase
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Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H.Freeman and Company

Reaction mechanism:

General acid/base catalysis



Glycolitic steps: Phosphorylation catalysed by phosphofructokinase (PFK)
(rate-limiting step)
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PFK2: a bifunctional (fandem)-enzyme
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cAMP-mediated hormonal regulation of PFK via F2,6BP
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Berg, Tymoczko, Stryer: Biochemistry



General mechanism of the activation of effector proteins associated with GPCRs
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Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company



Hormone-induced activation and inhibition of adenylyl cyclase in adipocytes
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Molecular Cell Biology, Sixth Edition

© 2008 W.H.Freeman and Company
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TABLE 15.2 G-protein families and their functions

G, class Initiating signal Downstream signal
Gys B-Adrenergic amines, Stimulates adenylate
glucagon, parathyroid cyclase
hormone, many others
Gui Acetylcholine, a-adrenergic Inhibits adenylate cyclase
amines, many neurotransmitters
o Photons Stimulates cGMP
phosphodiesterase
& . Acetylcholine, a-adrenergic Increases IP; and PLC-p
amines, many neurotransmitters intracellular calcium
Gg13 Thrombin, other agonists Stimulates Na™ and H™
exchange

Source: 7. Farfel, H. R. Bourne, and T. Iiri. N. Engl. |. Med. 340(1999):1012.




the second messenger cCAMP

Adenylyl cyclase generates
N XN
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Figure 15-9
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company



Structure and activation of Protein kinase A by cAMP
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Pseudosubstrate
sequence

C W
R R

¥y -

+ 4 cAMP

Active

Active



TABLE 15-2 Cellular Responses to Hormone-Induced Rise in cAMP in Various Tissues*

TISSUE HORMONE INDUCING RISE IN cAMP CELLULAR RESPONSE

Adipose Epinephrine; ACTH; glucagon Increase in hydrolysis of triglyceride; decrease in amino acid uptake

Liver Epinephrine; Increase in conversion of glycogen to glucose; inhibition
norepinephrine; glucagon of glycogen synthesis; increase in amino acid uptake; increase

in gluconeogenesis (synthesis of glucose from amino acids)

Ovarian follicle FSH; LH Increase in synthesis of estrogen, progesterone

Adrenal cortex ACTH Increase in synthesis of aldosterone, cortisol

Cardiac muscle Epinephrine Increase in contraction rate

Thyroid gland TSH Secretion of thyroxine

Bone Parathyroid hormone Increase in resorption of calcium from bone
et

Intestine Epinephrine Fluid secretion

Kidney Vasopressin Resorption of water

Blood platelets Prostaglandin | Inhibition of aggregation and secretion

*Nearly all the effects of CAMP are mediated through protein kinase A (PKA), which is activated by binding of cAMP.
source: E.W. Sutherland, 1972, Science 177:401.

Table 15-2

Molecular Cell Biology, Sixth Edition

© 2008 W.H.Freeman and Company



TABLE 12-3 Some Enzymes and Other Proteins Regulated by cAMP-Dependent Phosphorylation (by PKA)

Enzyme/protein Sequence phosphorylated” Pathway/process regulated
Glycogen synthase RASCTSSS Glycogen synthesis
Phosphorylase b kinase
a subunit VEFRRLSI
3 subunit RTKRSGSV Glycogen breakdown
Pyruvate kinase (rat liver) GVLRRASVAZL Glycolysis
Pyruvate dehydrogenase complex (type L) GYLRRASV Pyruvate to acetyl-CoA
Hormone-sensitive lipase PMRRSV Triacylglycerol mobilization and fatty
acid oxidation
Phosphofructokinase-2/fructose 2,6-bisphosphatase LQRRRGSSIPQ Glycolysis/ gluconeogenesis
Tyrosine hydroxylase FIGRRQSL Synthesis of L-DOPA, dopamine,
norepinephrine, and epinephrine
Histone H1 AKRKASGPPVS DNA condensation
Histone H2B KKAKASRKESYSVYVYK DNA condensation
Cardiac phospholamban (cardiac pump regulator) AIRRAST Intracellular [Ca2™]
Protein phosphatase-1 inhibitor-1 IRRRRPTP Protein dephosphorylation
PKA consensus sequencet XR(R/K)X(S/T)B Many

*The phosphorylated S or T residue is shown in red. All residues are given as their one-letter abbreviations (see Table 3-1).

X is any amino acid; B is any hydrophobic amino acid.

Berg, Tymoczko, Stryer: Biochemistry, 2002



Termination/desensitization of the signal fransduction process
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4. GTP-hydrolysis

Berg, Tymoczko, Stryer: Biochemistry, 2002



CREB links cAMP signals to transcription
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Glycolytic steps: Aldol cleavage catalysed by aldolase
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Glyolytic steps: Isomerisation catalysed by triose phosphate isomerase (TIM)
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Glycolysis
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Glycolytic steps: Oxidative phosphorylation catalysed by GAP-DH
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Mechanism of the GAP-DH catalysed reaction
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Glycolytic steps: Phosphorylation catalysed by phosphoglycerate kinase
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Glycolytic steps: Phosphoglycerate mutase catalyzes a phosphoryl group transfer from €3 to €2
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The 2,3-BPG Shunt
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The reactions of 2,3-bisphosphotglycerate (2,3-BPG) shunt are catalyzed by the bifunctional enzyme, 2,3-BPG
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Textbook of Biochemistry with Clinical Correlations, 7e edited by Thomas M. Devlin © 2011 John Wiley & Sons, Inc.



Glycolytic steps: Dehydration catalysed by enolase
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Glycolytic steps: phosphorylation catalysed by pyruvate kinase
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