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Utilization of pyruvate
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The ,anaerobic fate" of pyruvate
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Overall reactions of anaerobic metabolism:
Glucose + 2 ADP + 2P, —> 2 lactate + 2 ATP
Glucose + 2 ADP + 2 P, —> 2 ethanol + 2 CO, + 2 ATP




High rate of glycolysis in tumors suggests targets for chemotherapy and facilitates diagnosis
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Lehninger Principles of Biochemistry, Fifth Edition
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The high rate of glycolysis in tumor cells is used in diagnosis
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Box 14-1 figure 2
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Phosphorylation of 8F-labelled 2FdG by hexokinase traps the FdG in cells as
6-phosphoFdG, which can be detected by positron emission from 8F,



Detection of cancerous tissue by positron emission fomography (PET)
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Gluconeogenesis
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Glucose 6-phosphatase is active at the lumen of the ER
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Conversion of pyruvate into PEP is mediated by oxaloacetate

Pyruvat Phosphoenol-
pyruvat
O‘\ ¢0 O‘\ ¢0
(|3 Oxalacetat (I;
ﬁ—O—PO{
CH,

co,
N\ GDP
@) 0 0 GTP
ADP + P,
Pyruvat- Phospoenolpyruvat-

carboxylase carboxykinase




Biotin is the prosthetic group of pyruvate carboxylase
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The biotin-streptavidin system is the strongest
noncovalent biological interaction known,
having a dissociation constant, K(d), in the
order of 4x10(-14) M.
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Two-phase reaction mechanism of pyruvate carboxylase
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The reaction mechanism of PEPCK
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Alternative paths
from pyruvate to PEP

Note:
Carboxylation of pyruvate
occurs in the mitochondrion

The relative importance of the 2 pathways
depends on the availability of pyruvate or
lactate and the cytosolic requirements for

NADH for gluconeogenesis.
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TABLE 14-4

Pyruvate

Alanine
Cysteine
Glycine
Serine
Threonine
Tryptophan*

a-Ketoglutarate
Arginine
Glutamate
Glutamine
Histidine
Proline

Succinyl-CoA
Isoleucine*
Methionine
Threonine
Valine

Fumarate
Phenylalanine*
Tyrosine*
Oxaloacetate
Asparagine
Aspartate

Note: All these amino acids are precursors of blood glucose or liver
glycogen, because they can be converted to pyruvate or citric acid cycle
intermediates. Of the 20 common amino acids, only leucine and lysine
are unable to furnish carbon for net glucose

synthesis.

*These amino acids are also ketogenic (see Fig. 18-21).

Table 14-4

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W.H.Freeman and Company



The Cori Cycle: Metabolic cooperation between skeletal muscle and liver

Anaerobic utilization of
pyruvate converted to
lactate (acidic). At pH
7.35 lactate
disassociates to
carboxylate anion,
lactate and H+.

The lactate and H+ are
transported out of the
cell, diffuse into the
blood and can cause
lactic acidosis.

But most lactate is taken
up by the liver and heart
muscle and oxidized back
to pyruvate.
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Lehninger Principles of Biochemistry, Fifth Edition
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Pyruvate + HCO; + ATP — oxaloacetate + ADP + P, X2
Oxaloacetate + GTP — phosphoenolpyruvate + CO, + GDP X2
Phosphoenolpyruvate + H,0 — 2-phosphoglycerate X2
2-Phosphoglycerate —— 3-phosphoglycerate X2
3-Phosphoglycerate + ATP — 1,3-bisphosphoglycerate + ADP X2
1,3-Bisphosphoglycerate + NADH + H* — glyceraldehyde 3-phosphate + NAD* + P, X2

Glyceraldehyde 3-phosphate —— dihydroxyacetone phosphate

Glyceraldehyde 3-phosphate + dihydroxyacetone phosphate —— fructose 1,6-bisphosphate

Fructose 1,6-bisphosphate — fructose 6-phosphate + P,

Fructose 6-phosphate —— glucose 6-phosphate

Glucose 6-phosphate + H,0 —— glucose + P,

Sum: 2 Pyruvate + 4ATP + 2GTP + 2NADH + 2H" + 4H,0 — glucose + 4ADP + 2GDP + 6P; + 2NAD™

Note: The bypass reactions are in red; all other reactions are reversible steps of glycolysis.The figures at the right indicate that the reaction is to be
counted twice, because two three-carbon precursors are required to make a molecule of glucose. The reactions required to replace the cytosolic NADH
consumed in the glyceraldehyde 3-phosphate dehydrogenase reaction (the conversion of lactate to pyruvate in the cytosol or the transport of reducing
equivalents from mitochondria to the cytosol in the form of malate) are not considered in this summary. Biochemical equations are not necessarily bal-
anced for H and charge (p.501).

Table 14-3
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H.Freeman and Company

Sum of glycolysis:
Glucose + 2NAD* + 2ADP + 2P. = 2pyruvate + 2NADH + 2H* +2ATP + 2H,O

2ATP + 2GTP + 4H,0 - 2ADP + 2GDP + 4P; Prize for independent regulation



The allosteric modulation of key enzymes of Gluconeogenesis and Glycolysis
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Coordinated transcriptional regulation of Gluconeogenesis and
by insulin and cAMP in liver
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Hormonal Regulation of Gene Expression

Regulation of glycolysis by allosteric activation or
Inhibition, or the phosphorylation/
dephosphorylation of rate-limiting enzymes, is
short term, i.e., min or h.

Slower, and more profound, hormonal influences
on [enzyme protein] synthesized result in 10-20-
fold increases in enzyme activity over h to days.

Current focus is on glycolysis, reciprocal changes
also occur in the rate-limiting enzymes of
gluconeogenesis (synthesis of glucose).

Regular consumption of carbohydrate-rich meals
or administration of insulin initiates increase in
glucokinase, phosphofructokinase, and pyruvate
kinase In liver reflecting increases in gene
transcription, and increased enzyme synthesis.

High activity of these 3 enzymes favors conversion
of glucose to pyruvate.

Conversely, gene transcription and synthesis of
glucokinase, PFK, and pyruvate kinase are
decreased when plasma glucagon is high and
insulin is low, as seen in fasting or diabetes.
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Insulin activates PKB via PI-3 kinase

A Ras independent pathway activates Protein Kinase B
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