Biochemistry

Metabolism

22.11.2018 - 11.12.2018

The fate of pyruvate Citrate cycle

Gerhild van Echten-Deckert

Tel. 73 2703 E-mail: g.echten.deckert@uni-bonn.de www.limes-institut-bonn.de

Utilization of pyruvate

Thiamine pyrophosphate (TPP), the cofactor of pyruvate decarboxylase

Also co-factor of: pyruvate-DH, ∞-ketoglutarate-DH, transketolase

Figure 17-26 © John Wiley & Sons, Inc. All rights reserved.

> Thiamine, vitamin B₁ Deficiency: Beriberi disease

Catalytic Mechanism of Pyruvate Decarboxylase

Beriberi – deficiency of thiamine (vit. B1)

- There are two major types of beriberi:
 - Wet beriberi affects the cardiovascular system.
 - rare in the United States because most foods are now vitamin enriched.
 - Dry beriberi/Wernicke Korsakoff syndrome affects the nervous system.
- Today, beriberi occurs mostly in patients who abuse alcohol. Ethanol
 interferes with thiamine uptake in the gastrointestinal tract, its storage in
 the liver and its transformation in the active form (pyrophosphate).
 Moreover, drinking heavily can lead to poor nutrition and makes it harder to
 eat.
- Beriberi can occur in breast-fed infants when the mother's body is lacking in thiamine. The condition can also affect infants who are fed unusual formulas that don't have enough thiamine.
- Getting dialysis and taking high doses of diuretics raise the risk of Beriberi.

Dry and wet Beriberi: Symptoms

• Symptoms of dry beriberi: affects the <u>nervous system</u>. Wernicke-Korsakoff syndrome is a brain disorder caused by thiamine deficiency that results in a number of neurologic symptoms and can lead to psychosis, confusion and hallucinations. Difficulty walking; loss of feeling in hands and feet; loss of muscle function or paralysis of the lower legs; mental confusion/speech difficulties; pain; strange eye movements (nystagmus); tingling; vomiting

• Symptoms of wet beriberi: affects the <u>cardiovascular system</u>; awakening at night short of breath; increased heart rate; shortness of breath with activity; swelling of the lower legs. Thiamine Deficiency: treatment is to replace the thiamine your body is lacking

Biochemistry. Voet & Voet

TABLE 17.1 Pyruvate dehydrogenase complex of E. coli

-		Number	Prosthetic		
Enzyme	Abbreviation	of chains	group	Reaction catalyzed	
Pyruvate dehydrogenase component	E ₁	24	TPP	Oxidative decarboxylation of pyruvate	
Dihydrolipoyl transacetylase	E_2	24	Lipoamide	Transfer of the acetyl group to CoA	
Dihydrolipoyl dehydrogenase	E_3	12	FAD	Regeneration of the oxidized form of	

Electron micrograph

Berg, Tymoczko, Stryer: Biochemistry

Regulation of the PDH multienzyme complex

Figure 21-17 © John Wiley & Sons, Inc. All rights reserved.

Reactions of the citric acid cycle

			Prosthatia		ΔG°	
Step	Reaction	Enzyme	group	Type*	kcal mol ^{−1}	kJ mol⁻¹
1	Acetyl CoA + oxaloacetate + $H_2O \longrightarrow$ citrate + CoA + H ⁺	Citrate synthase		a	-7.5	-31.4
2a	Citrate \implies cis-aconitate + H ₂ O	Aconitase	Fe–S	b	+2.0	+8.4
2b	cis -Aconitate + H ₂ O \implies isocitrate	Aconitase	Fe–S	С	-0.5	-2.1
3	Isocitrate + NAD ⁺ \implies α -ketoglutarate + CO ₂ + NADH	Isocitrate dehydrogenase		d + e	-2.0	-8.4
4	α -Ketoglutarate + NAD ⁺ + CoA \implies succinyl CoA + CO ₂ + NADH	α-Ketoglutarate dehydrogenase complex	Lipoic acid, FAD, TPP	d + e	-7.2	-30.1
5	Succinyl CoA + P_i + GDP \Longrightarrow succinate + GTP + CoA	Succinyl CoA synthetase		f	-0.8	-3.3
6	Succinate + FAD (enzyme-bound) \implies fumarate + FADH ₂ (enzyme-bound)	Succinate dehydrogenase	FAD, Fe–S	е	~0	0
7	$Fumarate + H_2O \implies L-malate$	Fumarase		С	-0.9	-3.8
8	$\begin{array}{c} \text{L-Malate} + \text{NAD}^+ \rightleftharpoons\\ \text{oxaloacetate} + \text{NADH} + \text{H}^+ \end{array}$	Malate dehydrogenase		e	+7.1	+29.7

T

*Reaction type: (a) condensation; (b) dehydration; (c) hydration; (d) decarboxylation; (e) oxidation; (f) substrate-level phosphorylation.

The most important anaplerotic reaction of the citric acid cycle: (Biotin, co-factor)

AcetylCoA = allosteric activator of pyruvate carboxylase !!!

Amphibolic functions of the citric acid cycle

Figure 21-26 © John Wiley & Sons, Inc. All rights reserved.

Vitamin B₆ derived co-enzymes

Biochemistry. Voet & Voet

The mechanism of PLP-dependent enzyme-catalyzed transamination

The π -orbital framework of a PLP-amino acid Schiff base

Biochemistry. Voet & Voet

